一、鋼鐵工業(yè)的發(fā)展與焊接技術(shù)的關(guān)系
焊接的主要對(duì)象是各種鋼材,因此鋼材的產(chǎn)量、表觀消費(fèi)量、鋼材的品質(zhì)及其發(fā)展態(tài)勢(shì)就直接決定了焊接行業(yè)的可持續(xù)發(fā)展及焊接技術(shù)的發(fā)展方向。自1996年以來,我國鋼產(chǎn)量已突破1億t,而后幾年鋼產(chǎn)量連年增加。尤其是自2001年以來,我國的鋼產(chǎn)量出現(xiàn)了跳躍式發(fā)展,每年鋼產(chǎn)量均增加4000萬t左右,到2004年,我國鋼產(chǎn)量已突破2.97億t,鋼材表觀消費(fèi)量達(dá)3.12億t。如此大的鋼材產(chǎn)量和鋼材消耗量大幅度的牽動(dòng)著焊接行業(yè)的發(fā)展。焊接設(shè)備的需求增多,焊接用量增大,增加了焊接產(chǎn)業(yè)的就業(yè)機(jī)會(huì),壯大了焊接產(chǎn)業(yè)隊(duì)伍,同時(shí)也促進(jìn)了焊接技術(shù)向著優(yōu)質(zhì)、高效、低成本和自動(dòng)化方向發(fā)展。
隨著冶金技術(shù)及控軋控冷技術(shù)的提高,鋼材品質(zhì)不斷提高,鋼材的裂紋積脆化傾向顯著減小,焊接性得到了明顯改善,但也出現(xiàn)了一些新的焊接性問題,推動(dòng)著我們焊接工作者在焊接方法、工藝、材料等方面發(fā)展新技術(shù),解決新問題,不斷推動(dòng)焊接技術(shù)的向前發(fā)展。
二、鋼鐵工業(yè)的發(fā)展趨勢(shì)
1.我國鋼鐵工業(yè)與焊接行業(yè)的可持續(xù)發(fā)展
鋼產(chǎn)量是衡量一個(gè)*綜合經(jīng)濟(jì)實(shí)力的重要指標(biāo)之一,也是我國工業(yè)化進(jìn)程中的支柱產(chǎn)業(yè)。由于自我國改革開放以來,經(jīng)濟(jì)持續(xù)高速增長,拉動(dòng)了鋼鐵工業(yè)的發(fā)展,所以近幾年來使我國的鋼產(chǎn)量迅速增長。這不僅使我國成為世界上頭號(hào)鋼鐵生產(chǎn)大國,也成為頭號(hào)鋼鐵消費(fèi)大國(見表1)。表1 我國鋼產(chǎn)量發(fā)展一覽表年代鋼產(chǎn)量/億t世界排名鋼材表觀消費(fèi)量/億t鋼材凈進(jìn)口量/億t 1949 0.00158 26——1957 0.0535 9——1965 0.1223 8——1978 0.3178 5——1996 1.0025 1 1.0515 0.1598 1997 0.9987 1 1.0847 0.1322 1998 1.0738 1 1.1623 0.1242 1999 1.2102 1 1.3220 0.1486 2000 1.276 1 1.4121 0.1596 2001 1.53 1 1.7020 0.1722 2002 1.9218 1 2.1122 0.2449 2003 2.30 1 2.666 0.3655 2004 2.97 1 3.12 0.138
2004年我國鋼產(chǎn)量達(dá)到2.97億t,2005年*季度鋼產(chǎn)量比去年同期增長了23.7%,按照這種發(fā)展速度,今年的鋼產(chǎn)量有可能突破3.5億t。有表1可以看出,在2010年以前鋼鐵工業(yè)仍呈發(fā)展勢(shì)頭,即便是發(fā)展達(dá)到平衡之后,仍然會(huì)在峰值產(chǎn)量上維持相當(dāng)長的時(shí)間。
據(jù)統(tǒng)計(jì)我國焊接結(jié)構(gòu)用鋼占鋼產(chǎn)量的50%左右,鋼鐵工業(yè)的發(fā)展給我國焊接行業(yè)的可持續(xù)發(fā)展創(chuàng)造了很大的發(fā)展空間。據(jù)此推斷在近10年內(nèi)仍是焊接行業(yè)發(fā)展的黃金時(shí)段。
2.鋼鐵工業(yè)發(fā)展中存在的主要問題
我國雖已成為世界上頭號(hào)鋼鐵大國,但并非屬于鋼鐵強(qiáng)國,我國生產(chǎn)的鋼種多屬于低層次普通鋼,高效優(yōu)質(zhì)鋼材生產(chǎn)量較少或不能生產(chǎn),我國鋼鐵工業(yè)主體上屬于高消耗、高能耗、高污染、低質(zhì)量的狀態(tài)。盡管近年來各鋼廠都進(jìn)行了大量的資金投入,但由于市場(chǎng)的驅(qū)動(dòng),許多鋼廠的眼睛依然盯在鋼鐵產(chǎn)量上,在高附加值鋼材的研發(fā)及生產(chǎn)上遠(yuǎn)遠(yuǎn)跟不上形勢(shì)的要求,如高強(qiáng)鋼、耐候鋼、耐熱鋼、耐蝕鋼、低溫鋼、微合金控軋控冷鋼等多種專業(yè)用鋼,以及各種板材及型鋼也不能滿足市場(chǎng)需求,因此許多優(yōu)質(zhì)鋼還需要依賴于進(jìn)口。
這種只追求數(shù)量而忽略質(zhì)量的鋼鐵工業(yè)發(fā)展態(tài)勢(shì)急需扭轉(zhuǎn)。僅2001年我國進(jìn)口優(yōu)質(zhì)鋼材1720萬t,2002年凈進(jìn)口2449萬t,2003年凈進(jìn)口鋼為3655萬t,我國鋼材的進(jìn)口量超過美國,居世界*位。而優(yōu)質(zhì)鋼材的價(jià)格是普通鋼材價(jià)格的3倍,如不進(jìn)口或少進(jìn)口,將會(huì)引起效益的顯著增加。2004年凈進(jìn)口約1383萬t,比2003年下降62.16%,即2004年增加的鋼產(chǎn)量中有45%是用于頂替進(jìn)口和擴(kuò)大出口的,這是具有重大意義的轉(zhuǎn)折。
世界鋼鐵強(qiáng)國的經(jīng)驗(yàn)教訓(xùn)值得借鑒,20世紀(jì)70年代日本、歐共體的鋼產(chǎn)量均達(dá)到1.2億t,80年代初轉(zhuǎn)向退至1億t。將以產(chǎn)量為主轉(zhuǎn)變?yōu)橐再|(zhì)量為主組織生產(chǎn),80年代初即完成轉(zhuǎn)變,以優(yōu)質(zhì)鋼材沖擊美國和世界市場(chǎng),表面上看產(chǎn)量降低了,但總的產(chǎn)值和利潤提高了。而且減少了投資,節(jié)省了能源和資源,降低了污染,社會(huì)效益和經(jīng)濟(jì)效益均獲得了顯著的提高。
*正處在現(xiàn)代化工業(yè)的建設(shè)過程中,鋼材需求量較大,矛盾尚不尖銳。但由于低層次鋼材盲目擴(kuò)產(chǎn),勢(shì)必造成供大于求,產(chǎn)品積壓,甚至導(dǎo)致虧損。而高品質(zhì)鋼材供不應(yīng)求,尚需進(jìn)口。上述形勢(shì)如不及時(shí)扭轉(zhuǎn),幾年之后,必將招致嚴(yán)重的后果。
針對(duì)上述鋼鐵工業(yè)發(fā)展?fàn)顩r,國務(wù)院于2005年4月20日審議并原則通過《鋼鐵產(chǎn)業(yè)發(fā)展政策》,適時(shí)提出了對(duì)我國鋼鐵工業(yè)發(fā)展的宏觀調(diào)控政策。指出要按照國務(wù)院常務(wù)會(huì)議提出的指導(dǎo)思想,貫徹落實(shí)科學(xué)發(fā)展觀,堅(jiān)持“三個(gè)重在”和“一個(gè)根本轉(zhuǎn)變”,即重在增加高附加值產(chǎn)品、提高質(zhì)量,不能片面追求數(shù)量擴(kuò)張;重在提高產(chǎn)業(yè)集中度,加強(qiáng)現(xiàn)有企業(yè)的改組改造,不能單純依靠鋪新攤子、上新項(xiàng)目;重在降低消耗,提高企業(yè)和產(chǎn)品競(jìng)爭力,不能依賴消耗資源、污染環(huán)境。要堅(jiān)持走新型工業(yè)化發(fā)展道路,實(shí)現(xiàn)我國鋼鐵工業(yè)從大到強(qiáng)的根本轉(zhuǎn)變,努力建成具有國際競(jìng)爭力的鋼鐵強(qiáng)國,增強(qiáng)競(jìng)爭力,實(shí)現(xiàn)可持續(xù)發(fā)展。
3.目前我國鋼鐵工業(yè)的發(fā)展勢(shì)態(tài)上述形勢(shì)已引起我國高層和部分大鋼廠的注意,并紛紛投入大量資金進(jìn)行結(jié)構(gòu)調(diào)整,加快技術(shù)改造和新品開發(fā)。(1)連鑄或連鑄連軋工藝的應(yīng)用 目前各大鋼廠已全部采用連鑄或連鑄連軋工藝代替鋼錠澆鑄,并施加電磁攪拌技術(shù),使得過去鋼板的偏析與夾層缺陷已經(jīng)基本絕跡。連鑄連軋技術(shù)2001年已達(dá)到95%,已遠(yuǎn)遠(yuǎn)超過89%的世界平均水平,達(dá)到世界先進(jìn)水平。(2)冶煉技術(shù)得到大幅度的提高 鐵液預(yù)處理、復(fù)合吹煉、爐外精煉等先進(jìn)煉鋼技術(shù)的應(yīng)用,使鋼液中的W(S、P、O、N、H)等雜質(zhì)已大幅度降低?,F(xiàn)在不少低合金鋼Ws的實(shí)物水平都小于0.005%,其中用于油氣管道的X70鋼,以Ws<0.03%供貨。(3)控軋控冷(TMCP)技術(shù)的應(yīng)用 控軋指在更低的溫度下停軋,擬制高溫奧氏體晶體長大;控冷即軋后立即加快冷卻速度,既避免晶體長大,又提高形核率,產(chǎn)生強(qiáng)韌性更高的細(xì)小貝氏體或針狀鐵素體,使碳、氮化物在更低的溫度下彌散析出,通過細(xì)化晶粒顯著改善鋼的強(qiáng)韌性。傳統(tǒng)的細(xì)晶粒鋼其晶粒直徑<100μm,而TMCP鋼的晶??蛇_(dá)到10~50μm,超細(xì)晶粒鋼的晶粒可達(dá)0.1~10μm。(4)低合金和微合金高強(qiáng)鋼的發(fā)展 目前用于造船、橋梁、鋼結(jié)構(gòu)建筑、壓力容器、低溫鋼、耐熱鋼、管線鋼等都在向“純凈化、低碳、超低碳、微合金化和控軋控冷”方向發(fā)展。低合金(合金含量<5%)和微合金(微合金元素總量<0.2%)高強(qiáng)鋼不僅是我國,也是世界鋼鐵工業(yè)的發(fā)展方向。其基本思想是:打破傳統(tǒng)的C、Mn、Si系鋼的設(shè)計(jì)思想,采用降碳、多種微量元素(如V、Nb、Ti、Cu、Re等)合金化,并通過控軋控冷工藝細(xì)化晶粒、提高強(qiáng)韌性,保證綜合的力學(xué)性能。該類鋼種具有如下特征:*,降碳:是為了改善塑性、韌性和焊接性。
碳是最主要的強(qiáng)化元素,但會(huì)強(qiáng)烈的惡化塑韌性和焊接性。因此,新鋼種中都嚴(yán)格控制碳含量,如X70、X80鋼中的Wc僅為0.03%~0.04%,有的甚至達(dá)到超低碳水平。第二,微合金化技術(shù):通過向鋼中加入少量合金元素如Ti、V、Nb、Al、Re等提高強(qiáng)度、改變組織、細(xì)化晶粒、凈化基體,使鋼實(shí)現(xiàn)強(qiáng)韌化。第三,高潔凈化:通過精煉,清除雜質(zhì),凈化基體,控制W(S、P、O、N、H)的質(zhì)量分?jǐn)?shù),這是90年代的研究熱點(diǎn)。鋼中雜質(zhì)S、P、O、N、H的總質(zhì)量分?jǐn)?shù)從普通鋼的W(S+P+O+N+H)<0.025%降到經(jīng)濟(jì)潔凈鋼的W(S+P+O+N+H)<0.012%,并開始研究W(S+P+O+N+H)<0.005%的超潔凈鋼。采用上述基本思想已經(jīng)開發(fā)出了多種新鋼種,如管線鋼X60、X70、X80,國外已開發(fā)出X100、X120。目前的西氣東輸采用了X70鋼,總長近4000km。(5)新一代鋼鐵材料的發(fā)展 我國于1998年在重大基礎(chǔ)研究發(fā)展規(guī)劃(973)中啟動(dòng)了“新一代鋼鐵材料重大基礎(chǔ)研究”項(xiàng)目,其目的是將占我國鋼產(chǎn)量60%的碳素鋼、低合金鋼、合金結(jié)構(gòu)鋼的強(qiáng)度和壽命提高一倍。日本和韓國在1997年也開始了一個(gè)歷時(shí)10年的21世紀(jì)結(jié)構(gòu)鋼項(xiàng)目。新一代鋼鐵材料的特色是:超潔凈度、超均勻性、超細(xì)晶粒,在不增加甚至在降低碳及合金元素的條件下,強(qiáng)度和壽命提高一倍。超潔凈度是指鋼中W(S+P+O+N+H)<0.008%;超細(xì)晶粒是指晶粒直徑在0.1~10μm之間;超均勻性是指成分、組織、性能的均勻一致,并強(qiáng)調(diào)組織均勻的主導(dǎo)地位。通過上述技術(shù)的綜合應(yīng)用,可使鋼的強(qiáng)韌性獲得大幅度提高。2000年,我國400MPa級(jí)和800MPa級(jí)超細(xì)晶粒鋼的研究已取得實(shí)質(zhì)性進(jìn)展,其中400MPa級(jí)超細(xì)晶粒鋼已開始在生產(chǎn)中推廣應(yīng)用??梢灶A(yù)料,該類鋼材的研發(fā)成功,將會(huì)使我國的鋼材生產(chǎn)發(fā)生革命性的變革。三、鋼鐵技術(shù)的發(fā)展引起的焊接性轉(zhuǎn)變1.鋼的焊接性發(fā)展合金結(jié)構(gòu)鋼的發(fā)展,滿足了焊接結(jié)構(gòu)多方面的要求,如高強(qiáng)度、耐高溫、耐低溫及耐腐蝕等,并在艦船、工程機(jī)械、石油管線、鍋爐及壓力容器、橋梁、汽車、火車及發(fā)電設(shè)備等領(lǐng)域得到了廣泛的應(yīng)用。上述合金結(jié)構(gòu)鋼的優(yōu)越性能是靠調(diào)整鋼中碳及合金元素的含量或配以適當(dāng)?shù)臒崽幚韥韺?shí)現(xiàn)的,碳及合金元素的增加往往會(huì)給鋼的焊接性帶來不利的影響。不同鋼種所出現(xiàn)的焊接性問題不同,在合金結(jié)構(gòu)鋼中,隨著碳及合金元素含量增多,勢(shì)必會(huì)引起接頭的脆化、軟化及裂紋傾向增大。這些焊接性問題的出現(xiàn),往往會(huì)降低焊接結(jié)構(gòu)安全運(yùn)行的可靠性,造成焊接結(jié)構(gòu)的早期破壞。為了不斷改善合金結(jié)構(gòu)鋼的焊接性,國外從20世紀(jì)60年代末,國內(nèi)從80年代就從冶煉入手開始研制并生產(chǎn)焊接性良好的微合金控軋鋼,并開始研究下一代超細(xì)晶粒鋼。新鋼種的出現(xiàn)給鋼的焊接性帶來了重大的變革。2.微合金化鋼的焊接性微合金控軋控冷鋼的主要特點(diǎn)是高強(qiáng)、高韌及易焊。該鋼種由于含碳量低、潔凈度高、晶粒細(xì)化,因此具有較高的強(qiáng)韌性。所謂易焊是指不預(yù)熱或僅采用低溫預(yù)熱焊接不產(chǎn)生裂紋;采用大或較大熱輸入量焊接熱影響區(qū)不產(chǎn)生脆化。寶鋼和武鋼生產(chǎn)的微合金控軋鋼主要有管線鋼、壓力容器用鋼、橋梁鋼等,并在工程上得到了成功的應(yīng)用。其中管線鋼是最早進(jìn)行微合金化并應(yīng)用最為成功的范例。對(duì)管線鋼而言,主要的焊接性問題也是從焊接裂紋和HAZ的脆化問題進(jìn)行分析。(1)焊接裂紋 微合金控軋控冷鋼碳及雜質(zhì)含量低,如寶鋼和武鋼生產(chǎn)的X70鋼碳含量Wc≤0.05%,而且C、S、P等元素得到有效控制,因此焊接時(shí)液化裂紋和結(jié)晶裂紋傾向很小。但由于在鋼管成形焊接和安裝過程中存在較大的成形應(yīng)力或附加應(yīng)力,特別是在采用多絲大熱輸入量埋弧焊制管時(shí),由于焊縫晶粒過分長大,出現(xiàn)C、S、P局部偏析也容易引起結(jié)晶裂紋。
正是由于管線鋼的含碳量低,合金元素少,淬硬傾向小(如X70鋼屬于針狀鐵素體鋼),因而冷裂紋傾向小。但隨著強(qiáng)度級(jí)別的提高,板厚的增大,仍然具有一定的冷裂紋傾向。特別是在管線鋼現(xiàn)場(chǎng)敷設(shè)安裝進(jìn)行環(huán)縫焊接時(shí),由于常采用含氫量高的纖維素焊條打底,熱輸入量小,冷卻速度較快,熔敷金屬含氫量高,因而會(huì)增加冷裂紋的敏感性。強(qiáng)度越高,冷列問題將越突出(如X80、X100及X120等管線鋼)。(2)熱影響區(qū)的脆化 熱影響區(qū)的脆化是細(xì)晶鋼焊接時(shí)常發(fā)生的問題,一般所用的熱輸入量越大,脆化傾向越嚴(yán)重。HAZ的脆化問題主要有粗晶區(qū)(CGHAZ)脆化、臨界熱影響區(qū)(ICHAZ)脆化、多層焊時(shí)臨界粗晶熱影響區(qū)(IRCGHAZ)脆化、過臨界粗晶熱影響區(qū)脆化(SRCGHAZ)、亞臨界粗晶熱影響區(qū)(SCGHAZ)脆化等。其中,CGHAZ、IRCGHAZ、和SCGHAZ的脆化是微合金鋼焊接時(shí)最應(yīng)引起重視的脆化區(qū)域。為防止熱影響區(qū)的脆化,常采用如下措施:一是在成分上降碳,控制雜質(zhì)含量,加入少量Ni韌化基體。二是要抑制熱影響區(qū)的晶粒長大,向鋼中加入Ti、V、Nb等細(xì)化晶粒的元素,通過形成TiN、TiO、NbN、VN等氮氧化物抑制HAZ晶粒長大。三是改善熱影響區(qū)的組織。通過向鋼中加入變質(zhì)劑,提高相變形核率,細(xì)化組織。如向鋼中加入細(xì)小、均勻彌散分布的TiO微粒,可避免形成晶界鐵素體+側(cè)板條鐵素體等韌性低的組織,而在奧氏體晶內(nèi)形成細(xì)小的針狀鐵素體可顯著提高韌性。即便采用大或較大熱輸入量焊接亦不產(chǎn)生脆化。四是采用合適的焊接工藝參數(shù)。對(duì)一般過熱敏感的鋼種,焊接時(shí)通過調(diào)整焊接工藝參數(shù),減小高溫停留時(shí)間,避免奧氏體晶粒長大;采用合適的t8/5,使HAZ獲得韌化組織。3.新一代鋼鐵材料的焊接性由于新一代鋼鐵材料晶粒極度細(xì)化,焊接時(shí)面臨的嚴(yán)重問題是焊縫的強(qiáng)韌化、熱影響區(qū)晶粒長大等問題。(1)焊縫金屬的強(qiáng)韌化 焊縫金屬主要是通過合金化控制焊縫的組織實(shí)現(xiàn)強(qiáng)韌化。對(duì)400MPa級(jí)細(xì)晶鋼,只要通過調(diào)整焊縫組織使其獲得針狀鐵素體即可獲得理想的強(qiáng)韌性。而對(duì)于800MPa級(jí)以上超細(xì)晶鋼,要實(shí)現(xiàn)焊縫金屬與母材的等匹配較為困難。目前,我國及韓國擬開發(fā)的與800MPa級(jí)以上的超細(xì)晶粒鋼匹配的焊接材料是無預(yù)熱超低碳貝氏體焊接材料。(2)熱影響區(qū)的晶粒長大傾向 對(duì)于超細(xì)晶粒鋼,焊接時(shí)均會(huì)出現(xiàn)嚴(yán)重的晶粒長大傾向。這不僅會(huì)造成HAZ的脆化,而且還會(huì)導(dǎo)致HAZ的軟化。為解決這一問題,應(yīng)采用激光焊、超窄間隙GMA焊、脈沖MAG焊等低熱輸入的焊接方法。四、鋼鐵工業(yè)的發(fā)展促進(jìn)焊接材料產(chǎn)業(yè)的發(fā)展隨著我國工業(yè)化進(jìn)程的加快和鋼鐵工業(yè)的快速發(fā)展,近年來我國焊接材料產(chǎn)量每年均以幾十萬噸的速度激增,并與鋼材表觀消費(fèi)量的增加幾乎成正比的增加。目前我國焊接材料產(chǎn)量約占世界焊材總量的40%左右,真正成為世界首位的焊材消費(fèi)大國,但并不屬于焊材強(qiáng)國。
近年來鋼材表觀消費(fèi)量統(tǒng)計(jì)今后的焊材發(fā)展態(tài)勢(shì)應(yīng)注意以下幾點(diǎn):1.焊材產(chǎn)量的進(jìn)一步增長,焊材結(jié)構(gòu)將進(jìn)一步調(diào)整由于近年來鋼材的強(qiáng)勁增勢(shì),我國焊接材料消費(fèi)量仍將持續(xù)增長。2003年,我國鋼材消費(fèi)量為2.66億t,比2000年增長88%。焊材消費(fèi)量約205萬t,比2000年增長86%。2004年,我國鋼材及焊材消費(fèi)量均比去年同期增長17%。預(yù)計(jì)近兩年內(nèi)我國鋼材消耗量將達(dá)到3.5億t,并且隨著我國鋼結(jié)構(gòu)用鋼量的增加,焊接材料消耗量將更大。預(yù)計(jì)近5年內(nèi),我國焊接材料表觀消耗量將達(dá)到300萬t左右。隨著焊接技術(shù)向高效化、自動(dòng)化和高質(zhì)量方向發(fā)展,焊材結(jié)構(gòu)將會(huì)發(fā)生變化。其中焊條比例將下降,焊絲比例將提高。
近年來這種比例關(guān)系已經(jīng)發(fā)生了明顯的變化 2003~2004年焊接材料分項(xiàng)統(tǒng)計(jì)表焊材品種2003年/萬t 2004年/萬t相對(duì)增長(%)占焊材比例(%)2003年2004年電焊條150 165 10 73 68.7 氣保護(hù)實(shí)芯焊絲30 45 50 14.6 18.8 藥芯焊絲4 6 50 2 2.5 埋弧焊絲+焊劑20 24 20 10 10 共計(jì)205 240 17 其中焊絲共計(jì)54 75 39 26.34 31.25
1970年國外各發(fā)達(dá)*,仍以焊條電弧焊為主。當(dāng)時(shí)焊條占焊材總產(chǎn)量的比例,美國和西歐約70%,日本達(dá)87%。至1980年,美國和西歐焊條比例已下降到40%,現(xiàn)已下降到20%~30%之間。1982年日本焊條占焊材總量的50%,1990年下降到24%,2002年僅為17.4%。這表明日本的焊條電弧焊一下降到20%一下,80%以上均為自動(dòng)焊和高效焊接。20世紀(jì)80年代,我國焊條比例占焊材總量的90%,1999年焊條占85.5%。進(jìn)入21世紀(jì)后,我國焊條所占比例逐漸減少,由表2可以看出,2003年焊條占73%,到2004年焊條占68.7%,焊絲所占比例已達(dá)31.25%。上述數(shù)據(jù)說明,近年來我國焊材正逐步向結(jié)構(gòu)合理的方向發(fā)展。預(yù)計(jì)2005年鋼材表觀消費(fèi)量達(dá)到3.5億t,焊材總量將增加到260萬t。其中焊條比例將占65%左右,為165~170萬t。各種焊絲所占比例將增加到90萬t以上。2.現(xiàn)有焊材品質(zhì)的提升我國不僅是鋼材產(chǎn)量大國與鋼材消費(fèi)大國,而且也是世界上頭號(hào)焊材產(chǎn)量與焊材消費(fèi)大國。但現(xiàn)有焊材品種,普通焊材較多,高品質(zhì)焊材較少,大部分高品質(zhì)焊材還需依賴進(jìn)口。因此,我國的焊材行業(yè)要根據(jù)市場(chǎng)發(fā)展的需求,不僅要進(jìn)行產(chǎn)品結(jié)構(gòu)的調(diào)整,而且要不斷提升焊材的品質(zhì)及規(guī)格,以適應(yīng)市場(chǎng)的要求,并提高在國際市場(chǎng)競(jìng)爭的能力。比如:氣保護(hù)實(shí)芯焊絲應(yīng)向低飛濺、高性能、多品種方向發(fā)展;藥芯焊絲應(yīng)向?qū)掚娏?、低塵、低飛濺、快速焊方向發(fā)展;埋弧焊用焊絲和焊劑應(yīng)向高效率、多品種、高韌性方向發(fā)展;焊條、焊絲均應(yīng)隨著新型鋼種的發(fā)展進(jìn)行配套發(fā)展。3.微合金控軋鋼焊接材料的開發(fā)鋼鐵冶金技術(shù)的發(fā)展使低合金高強(qiáng)鋼實(shí)現(xiàn)了潔凈化、細(xì)晶化和力學(xué)性能上的強(qiáng)韌化,這就要求與之匹配的焊接材料也必須實(shí)現(xiàn)潔凈化、細(xì)晶化和強(qiáng)韌化。但由于焊縫金屬不能采用控軋控冷措施實(shí)現(xiàn)“細(xì)晶化”和“超細(xì)晶?!保膊荒艹霈F(xiàn)鋼材軋制時(shí)的形變強(qiáng)化,難以在相近化學(xué)成分下實(shí)現(xiàn)焊縫與母材的強(qiáng)韌性匹配。因此目前常用的焊接工藝與焊接材料將不適用于低碳微合金化控軋鋼,更不適用于21世紀(jì)新一代鋼鐵材料,這就需要對(duì)常用焊接材料及工藝實(shí)現(xiàn)重大變革。根據(jù)國內(nèi)外的研究,適用于微合金化細(xì)晶鋼和新一代鋼種的新型焊接材料應(yīng)該是高純潔度的針狀鐵素體或低碳貝氏體(ULCB)焊接材料。這種焊接材料具有較高的強(qiáng)韌性,尤其是ULCB焊接材料為獲得高強(qiáng)、高韌及高質(zhì)量焊縫金屬提供了潛在的可能性。ULCB的特點(diǎn)是其強(qiáng)韌性對(duì)冷卻速度不敏感,只是化學(xué)成分的函數(shù),因此,焊縫能夠在較寬的熱輸入范圍內(nèi)保持高的強(qiáng)韌性,可以提高熔敷效率。另外,由于ULCB采用了超低碳,抗氫致裂紋的能力很強(qiáng),所以可不預(yù)熱焊接而不產(chǎn)生裂紋。顯然,由于焊接冶金的不平衡性,要想使焊縫金屬的潔凈度達(dá)到潔凈鋼的水平相當(dāng)困難。但可在以下幾方面進(jìn)行工作:(1)焊接原輔材料的潔凈化 焊接原輔材料中的主體是盤條或鋼帶,可以通過上述冶煉技術(shù)實(shí)現(xiàn)凈化。目前武鋼生產(chǎn)的盤條鋼其潔凈度達(dá)到:Ws≤0.005%,Wp≤0.01%,鋼中的脆性夾雜物<1級(jí),達(dá)到了國際先進(jìn)水平,可以用于潔凈鋼的焊接。同時(shí),還應(yīng)嚴(yán)格控制其它原輔材料中的雜質(zhì)含量。
(2)焊接冶金反應(yīng)中的潔凈化 焊接過程中進(jìn)行著激烈的化學(xué)冶金反應(yīng),利用焊接冶金反應(yīng)進(jìn)行脫氧、脫硫、脫磷、脫氮及除氫是目前焊接材料中普遍采用的潔凈化技術(shù)。因此,在焊接材料的研究中,應(yīng)優(yōu)化配方及工藝參數(shù),盡可能使凈化反應(yīng)進(jìn)行的比較完善。4.高科技新型焊接材料的發(fā)展趨勢(shì)隨著我國工業(yè)化步伐的加快和新鋼種的不斷開發(fā)應(yīng)用,對(duì)焊接材料的要求越來越高,應(yīng)該不斷提高現(xiàn)有焊材品質(zhì)的同時(shí),開發(fā)多種新型焊材品種,以滿足現(xiàn)代化建設(shè)的需求。(1)開發(fā)高鋼級(jí)管線鋼(如X70、X80、X100、X120等)用新型焊接材料,包括氣保護(hù)和埋弧用實(shí)芯焊絲、自保護(hù)藥芯焊絲。(2)開發(fā)適于大型儲(chǔ)油罐(*一期工程162個(gè)10~15萬立方米的大型石油儲(chǔ)罐)用的高強(qiáng)度(屈服強(qiáng)度≥490MPa)、厚板(20~45mm)大熱輸入量用焊條、實(shí)芯焊絲和藥芯焊絲。(3)新一代微合金化耐熱鋼(如T91/P91、T92/P92、T23/P23等)用焊接材料。(4)與21世紀(jì)新一代鋼鐵材料超細(xì)晶粒鋼配套的新型焊接材料。(5)超低碳貝氏高強(qiáng)鋼(600~1500MPa)用焊接材料。超低碳貝氏高強(qiáng)鋼具有高強(qiáng)、高韌、焊接裂縫敏感性小等優(yōu)點(diǎn),在一定材料工藝下,焊前可不預(yù)熱,但焊縫在該強(qiáng)度級(jí)別下容易開裂。(6)對(duì)現(xiàn)有不銹鋼焊接材料進(jìn)行品質(zhì)提高。對(duì)于質(zhì)量要求高的重要場(chǎng)合用不銹鋼焊條仍需進(jìn)口。除國內(nèi)焊接材料廠家需要提高技術(shù)水平以外,原材料廠家(包括焊絲及原輔材料)還應(yīng)提供高質(zhì)量的原輔材料。同時(shí)應(yīng)開發(fā)雙相不銹鋼配套的焊接材料和“節(jié)鎳”、“含氮”的不銹鋼焊接材料,以緩解我國鎳資源的嚴(yán)重不足。五、結(jié)語由上述可知,鋼鐵工業(yè)的發(fā)展,對(duì)焊接技術(shù)和焊接材料的發(fā)展提出了新的機(jī)遇和挑戰(zhàn)??梢灶A(yù)測(cè),21世紀(jì)焊接方法和焊接材料都將發(fā)生重大的變革。尤其近10年內(nèi),各大型企業(yè)應(yīng)“順勢(shì)而為”,集中人力、物力和技術(shù)力量,加大科研開發(fā)力度,開展產(chǎn)學(xué)研結(jié)合,為21世紀(jì)新型焊接技術(shù)和焊接材料的變革奠定良好的基礎(chǔ)。