天津河西區(qū)春季高考班.小編推薦銳思,銳思如果想了解詳情可以咨詢客服老師,或者留言,老師看到會時間聯(lián)系您,下面小編為大家分享一些學習方法。
與高一高二不同之處在于,此時復習力學部分知識是為了更好的與高考考綱相結合,尤其水平中等或中等偏下的學生,此時需要進行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。下面是小編給大家?guī)淼母呷龜?shù)學重要知識點框架整合,以供大家參考!
高三數(shù)學重要知識點框架整合
1、函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(—x);
(2)若f(x)是奇函數(shù),0在其定義域內,則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調區(qū)間內有相同的單調性;偶函數(shù)在對稱的單調區(qū)間內有相反的單調性;
2、復合函數(shù)的有關問題
(1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域的原則。
(2)復合函數(shù)的單調性由"同增異減"判定;
3、函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關于直線x=對稱;